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1 Student Presentations

In this class, every enrolled student gave a presentation on a topic. Here are notes I took
for each presentation.

1.1 Kadison’s transitivity theorem

Definition 1.1. If M is a C∗-algebra acting on a Hilbert space H, M is said to act
topologically irreducibly if H has no proper, closed, invariant subspaces under M . M
is said to act algebraically irreducibly if H has no proper, invariant subspaces under
M .

From the definitions, we have that algebraically irreducible C∗-algebras are topologi-
cally irreducible.

Theorem 1.1 (Kadison’s transitivity theorem). If M is topologically irreudicble, it is
algebraically irreducible.

Why is this called the transitivity theorem? We will show that M acts n-transitively
on H; i.e. for all linearly independent x1, . . . , xn ∈ H and any y1, . . . , yn ∈ H, there is an
A ∈M such that Axi = yi for all 1 ≤ i ≤ n.

Lemma 1.1. Let x1, . . . , xn ∈ H be orthonormal, and let z1, . . . , zn ∈ H with ‖zi‖ ≤ r.
Then there exists an operator B ∈ B(H) such that Bxi = zi for all i and ‖B‖ ≤

√
2nr. If

there is a selfadjoint T with Txi = zi, then we can take B to be self-adjoint.

Proof. Extend x1, . . . , xn, xn+1, . . . , xm to an orthonormal basis for C{x1, . . . , xn, z1, . . . , zn}
(m < 2n). Let B̃ be the matrix induced by splitting up the zi according to this basis. Then

[B̃] =
√∑

|αi,j |2 ≤ (2n · r2)1/2 =
√

2nr.

Extend it by making it 0 on the orthogonal complement.
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Proof. Assume x1, . . . , xn are orthonormal, so x1, . . . , xn
B−→ y1, . . . , yn. By changing basis

and conjugating by change of basis operators, we can get this result for arbitrary sets.
Choose B0 such that B0xi = yi. Take A0 ∈ M such that ‖A0xi = yi‖ ≤ 1

2
√

2n
; this is

possible because M is topologically irreducible. Choose B1 such that B1xi = yi − A0xi
and ‖B1‖ ≤ 1

2 . By Kaplansky’s density theorem, choose A1 ∈M such that ‖A1‖ ≤ 1
2 and

A1xi −B1xi‖ ≤ 1
4
√

2n
.

Continue recursively: Suppose we have defined Bk such that ‖Bk‖ ≤ 1
2k

and Bkxi =

yi −A0xi −A1xi − · · · −Ak−1xi. Choose Ak ∈M such that ‖Ak‖ ≤ 1
2k

, ‖Akxi −Bkxi‖ ≤
1

2k+1
√

2n
. Choose ‖Bk+1‖ ≤ 1

2k+1 with Bk+1xi = yi−A0xi−A1xi− · · ·−Akxi. If Txi = yi,

we can choose the Bk and thus the Ak to be self-adjoint by Kaplansky’s theorem. Let
A =

∑∞
k=0Ak, This converges in norm to an element of M . Moreover,

yi −Axi = yi −
∞∑
k=0

Akxi = lim
k

(yi − a0xi −A1xi − · · · −Akxi) = lim
k

(Bk+1xi) = 0

because ‖xi‖ = 1 and ‖Bk+1‖ ≤ 1/2k+1. This proves n-transitivity and thus Kadison’s
theorem.

1.2 Dixmier’s averaging theorem

Theorem 1.2 (Dixmier’s averaging theorem). Let M be a von Neumann algebra with
center Z(M). For each x ∈ M , denote by K(x) the norm closure of the convex hull of
{uxu∗ : u ∈ U(M)}. Then K(x) ∩ Z(M) 6= ∅.

The bulk of the proof is in the following lemma.

Lemma 1.2. If x = x∗ ∈M , there is a u ∈ U(M) and y = y∗ ∈ Z(M) such that∥∥∥∥1

2
(x+ u∗xu)− y

∥∥∥∥ ≤ 3

4
‖x‖.

Proof. Suppose ‖x‖ = 1. Define projections p = 1[0,1](x) and q = 1[−1,0](x). By the
comparison theorem, there exists some z ∈ P (Z(M)) such that zq ≺ zp and (1 − z)p ≺
(1 − z)q. Take p1, p2, q1, q2 such that zq ∼ p1 ≤ p1 + p2 = 2p and (1 − zp) ∼ q − 1 ≤
q1 + q2 = (1− z)q.

Take two partial isometries v, w ∈ M with c∗c = w and vv∗ = p, w∗w = (1 − z)p,
vv∗ = q. Define u = v + v∗ + w + w∗ + p2 + q2. Then

u = v∗v + vv∗ + w8w + ww∗ + q2 + p2

= zq + p2 + (1− z)p+ q1 + q2 + p2

= p+ q

= 1.
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Also,
u∗p1u = zq, u∗q1u = (1− z)p u∗p2u = p2,

u∗zqu = p1, u∗(1− z)pu = q1, u∗q2u = q2.

We have −zq ≤ zx ≤ zp = p1 + p2. So

=⇒ −p1 ≤ zu∗xu ≤ zq + p2

=⇒ −1

2
(zq + p1) ≤ 1

2
(zx+ zu∗xu) ≤ 1

2
zq + p1 + p1

=⇒ 1

2
z ≤ 1

2
(2x+ zu∗xu) ≤ z

=⇒ −3

4
≤ 1

2
(2x− zu∗xu)− 1

4
z ≤ 3

4
z.

Similarly, repeating this with 1− z gives

−3

4
(1− z) ≤ 1

2
((1− z)x+ (1− z)u∗xu) +

1

4
(1− z) ≤ 3

4
(1− z).

If we add these together, we get∥∥∥∥1

2
(z + u∗xu)− 2z − 1

4

∥∥∥∥ ≤ 3

4
.

Proof. Let K denote the set of maps α : M → M of the form α(x) =
∑n

i=1 ciu
∗
ixui with

ui ∈ U(M),
∑

i ci = 1 and ci ≥ 0. For general x ∈ M denote a0 = Re(x) and b0 = Im(z).
By the lemma, there exist some u ∈ U(M) and y1 = y∗1 ∈ Z(M) with∥∥∥∥1

2
(a0 + u∗a0u)− y1

∥∥∥∥ ≤ 3

4
‖a0‖.

Denote α1(x) = 1
2(x+ u∗xu) and a1 = α1(a0). Use the lemma again on a1 − y1. Continue

inductively.
Given any ε > 0, we can find α ∈ K and y ∈ Z(M) for which ‖α(a0)−y‖ < ε. Similarly,

given this α, we can find β ∈ K and z ∈ Z(M) for which ‖β(α(b0))− z‖ < ε. Thus,

‖β(α(a0))− y‖ = ‖β(α(a0)− y)‖ ≤ ‖α(a0)− y‖ < ε.

Therefore,
‖β(α(x))− (y + iz)‖ < 2ε

The problem is that y+ iz might be dependent on ε. To fix that, we define a sequence
(Γn) ⊆ K and (zn) ⊆ Z(M) such that if x0 = x and xn = γn(xn−1), we have ‖xn−zn‖ ≤ 1

2n .
Thus,

‖xn+1 − xn‖ = ‖γn+1(xn − zn)− (xn − zn)‖ ≤ ‖γn+1(xn − zn)‖+ ‖xn − zn‖ <
1

2n−1
.

Thus, xn → x and zn → x, so x ∈ K(x) ∩ Z(M).
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1.3 The Ryll-Nardzewski fixed point theorem

I gave this presentation. See my notes on the subject.

1.4 `1(Z) is not a C∗-algebra

Theorem 1.3. `1(Z) is not a C∗-algebra.

Theorem 1.4. Let ϕ ∈ C(S1) with ϕ(z) = 0 for all z ∈ S1. Then ϕ̂ ∈ `∞(Z), x̂ϕ ∈ `∞(Z).

These are consequences of the following fact.

Theorem 1.5. Let Ω(`1(Z)) be the maximal ideal space of `1(Z). Ω(`1(Z)) ∼= S1, where
Ω(`1(Z)) is equipped with the weak topology in (`1(Z))∗ ∼= `∞(Z).

Proof. Let i denote the natural isomorphism from (`1(Z))∗ → `∞. We claim that i(Ω(`1(Z))) =
{α ∈ `∞(Z) : α(m+ n) = α(m)α(n)}.

For any ϕ ∈ Ω(`1(Z)) with i(ϕ) = αϕ,

αϕ(m+ n) =
∑

δm+nαϕ = ϕ(δm+n) = ϕ(δm ∗ δn) = ϕ(δm)ϕ(δn) = αϕ(m) · αϕ(n).

On the other hand, if α(m+ n) = α(m) · α(n), then

i−1(α)(f ∗ g) =
∑

(f ∗ g)α
∑
i

∑
j

f(i− j)g(j)α(i)

=
∑
j

∑
i

f(i− j)g(j)α(i− j)α(j)

= 〈g, α〉 〈f, α〉
= i−1(α(f)) · i−1(α(g)).

Now observe that α(m) = (α(1))m, which gives a bijection Ẑ→ A1 by α 7→ α(1). These
spaces are compact, so we only need to check continuity of the map to get a homeomor-

phism. If αi
wk−−→ α, then

αi(1) =
∑

δ1αi →
∑

δ1α = α(1).

So we get that S1 ∼= Ẑ ∼= Ω(`1(Z)).

Now we can show that `1(Z) is not a C∗-algebra.

Proof. Assume `1(Z) is a C∗-algebra. Then by the Gelfand transform, `1(Z) ∼= C(S1).
Then Γ(`1(Z)) = {ϕ ∈ C(S1) : ϕ̂ ∈ `1(Z)}.
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We claim that Γ̂(f) = f , where f ∈ `1(Z). If Γ(f) ∈ C1(S1), then Γ(f)(z) = 〈f, zn〉 =∑
f(n)zn. We check

Γ̂(f)(n) =
1

2π

∫ 2π

0

∑
f(n)einx)einx dx = f(n).

We now claim that if ϕ ∈ C(S1) then ϕ̂ ∈ `1(Z). We have

∧(Γ(ϕ̂)− ϕ)− Γ̂(ϕ̂)− ϕ̂ = 0

by the first claim.

Here is the proof of the other result.

Proof. Γ(f) is invertible if and only if f is invertible. Then if ϕ = Γ(f), then 1/ϕ =
Γ(f−1).

1.5 There are no nontrivial projections in C∗red(F2).

This is a presentation about Effros’ paper, “Why the circle is connected.” In a more
concrete sense, this is about the fact that the reduced C∗-algebra of Fn has no nontrivial
projections.

To begin, let’s motivate and define a connected C∗-algebra by examining C(X) for a
compact topological space X. If X is connected and P ∈ Proj(C(X)), then P = 0 or 1.
This is because P−1((1/2,∞)) and P−1((−∞, 1/2)) cover X. So we define connectedness
for a C∗-algebra as follows.

Definition 1.2. A C∗-algebra M is connected if Proj(M) = {I, 0}.

Consider C(S1). By Fourier series, C(S1) ∼= C∗red(Z), the reduced C∗-algebra. Z is the
free group on 1 generator. This is why this is related to the circle.

Theorem 1.6. There are no nontrivial projections in C∗red(F2).

With slight modifications, the argument we will make will generalize, with modifications
to Fn. The idea is that we will get two traces on C∗red(F2), one of which (ordinary trace -
tr) is always Z-valued on projections, and the other, τ , is faithful and unital. Then we will
find τ in terms of tr and use the following lemmas.

Lemma 1.3. If τ is

1. faithful (τ(a∗a) ≥ 0 for all a with τ(a∗a) = 0 =⇒ a = 0),

2. unital (τ(1) = 1),

3. tracial (τ(ab) = τ(ba)),
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then τ(Proj(M)) ⊆ Z. So there are no nontrivial projections.

Proof. Let P be a projection. Since P ∗P = P , τ(P ∗P ) = τ(P ) ≥ 0 (with equality iff
P = 0). The same is true for 1 − P . So 0 ≤ P ≤ 1. But τ(P ) = 0 or 1. If the former
occurs, then since τ is faithful, P = 0. If the latter occurs, τ(1− P (= τ(1)− τ(P ) = 0, so
1− P = 0. So P = 1.

Lemma 1.4. Let P,Q be projections in B(H) and suppose that P −Q is trace class (i.e.
tr(|P −Q|) <∞, so tr(P −Q) is independent of basis). Then tr(P −Q) ∈ Z.

Here, tr(A) =
∑

k 〈ek, Aek〉, where ek is an orthonormal basis of the space.

Proof. First, note that

P (P −Q)2 = P (P +Q− PQ−QP )

= P + PQ− PQ− PQP
= P − PQP,

(P −Q)2P = (P +Q− PQ−QP )P

= P − PQP.

So P (P −Q)2 = (P −Q)2P . Similarly, Q(P −Q)2 = (P −Q)2Q. So (P −Q)2 is positive,
and tr((P −Q)) <∞, so (P −Q)2 is a Hilbert-Schmidt operator. So (P −Q)2 is compact.

We get from the spectral theorem that

(P −Q)2 =
∑
k

λkPk,

where λk are eigenvalues with λk > 0 and Pk are projections. We can take λ1 > λ2 > λ3 >
· · · , and we have limk→∞ λk = 0. Define q = 1−

∑
k Pk. Observe that (P −Q)q = 0, as

〈P −Q)qx, (P −Q)qx〉 =
〈
qx, (P −Q)2qx

〉
=

〈
qx,
∑
k

λkPkqx

〉
= 0,

where Pkq = 0 for all k. Also, PPk = PkP and QPk = PkQ (as Pk = fk((P − Q)2) for
some continuous fk on Spec((P −Q)2)). So

P −Q =
∑
k

(P −Q)Pk =
∑
k

PPk −
∑
j

QPj .

6



This gives us that

tr(P −Q) =
∑

tr((P −Q)Pk) =
∑
k

tr(PPk)− tr(QPk).

Moreover, tr(PPk) and tr(QPk) are integers because they are finite dimensional projections
(The trace of a finite dimensional projection is its dimension.)

We can show that a set is connected by showing that any probability measure on the
set gives 0 or 1 measure to a clopen set. This will be similar to what we are doing. The
trace we will define will be analogous to integrating against Lebesgue measure.

The second trace we are interested in is τF2 given by

τ(a) = 〈e1, λ(a)e1〉

where a ∈ C∗red(F2), and λ is left multiplication.

Remark 1.1. Suppose a =
∑
ag`g. Then 〈eh, agegh〉 = agδh,gh, so g = 1 = a1. Such a

trace is faithful and unital (done in class).

Compare this to tr(a): The trace tr is a sum of terms like

〈eg, λ(a)eg〉 = 〈e1, λ(a)e1〉 = τ(a).

We have λ : C∗red(F2) → B(`2(F2)). We will define λ0 : C∗red(F2) → B(`2(F2)) as follows.
Write F2 = Su ∪ Sv ∪ {e}, where Su is the set of words that end with u or u−1 and Sv is
the set of words that end with v or v−1. This gives `2(F2) = Hu ⊕HV ⊕ Ce1.

Hu and Hv are isomorphic to F2 in the sense that F2 acts in the same way on them.
What is the action/representation? Define

λ0(u)e1 = 0, λ0(u)eg =

{
eug if g 6= u−1 or 1

eu g = u−1
, λ0(v)eg =

{
evg if g 6= v−1 or 1

eu g = u−1.

This defines a representation λ0 : C∗red(F2)→ B(`2(F2)) where λ0(e1) = 0; this is the only
thing in the kernel. We have λ|Hu = λ0|Hu and λ|Hv = λ0|Hv . So we get

λ0
∼= λ|Hu ⊕ λ|Hv ⊕ 0e1 .

Let’s compare λ and λ0. If a ∈ C∗red(F2), then τ(a) = 〈eg, λ(a)eg〉. On the other hand,
if s ∈ Su, then

〈es, λ0(u)es〉 = 〈et, λ(u)et〉 = τ(u)

for some t. But 〈e1, λ0(u)e1〉 = 0. So the diagonal entries of λ(u) and λ0(u) differ only at
e1. By induction on the length of a word, we get that λ(a) and λ0(a) differ only at finitely
many places for a ∈ CF2.
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We want to say that τ(a) = tr(λ(a)− λ0(a)). But we don’t know that λ(a)− λ0(a) is
trace class in general. Define A0 ⊆ C∗red(F2) by a ∈ A0 if and only if λ(a)− λ0(a) is trace
class. We want to show that if P ∈ Proj(C∗red(F2)) with P 6= 0, I, then there exists an
e ∈ Proj(A0) with e 6= 0, I. But then τ(e) = tr(λ(e)− λ0(e)) ∈ Z, which is a contradiction
by the first lemma.

If a ∈ CF2, λ(a) and λ0(a) differ at only finitely many places, so λ(a)− λ0(a) is finite
rank and is hence trace class. So CF2 ⊆ A0. Since CF2 is dense in C∗red(F2), we have an
a ∈ CF2 s.t. ‖a−P‖ < 1/3; we can choose a to be self-adjoint. Then Spec(a) is contained
in the union of some neighborhood in R about 0 and some neighborhood in R about 1.

We can’t just use continuous functional calculus, because we might get something out
of it which is not trace class. Instead, define e by

e =
1

2πi

∫
Γ
(z − a)−1 dz,

where Γ is a closed contour around the part of Spec(a) near 1. Since λ(a) and λ0(a) differ
at only finitely many places, the same is true for λ(z − a) and λ0(z − a) (and we have
a uniform bound on the dimension of ker(λ − λ0)⊥). Let Rn be the n-th approximating
Riemann sum. Then Rn → e in the operator norm topology, so |Rn| → |e| in the operator
norm. Also, ‖Rn‖ ≤ C for all n. Moreover, if A is finite rank, tr(|A|) ≤ ‖A‖ · dim(im(A)),
which gives us a uniform bound on tr(|λ((z − a)−1) − λ0((z − a)−1)|). Then use the fact
that if An → A in the operator norm and tr(|A|) ≤ C, then tr(|A|) ≤ C. Hence, e is trace
class, so τ(e) = tr(λ(e)− λ0(e) ∈ Z.
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